Güncelleme Tarihi:
Bir öğretmenin nitelikli bir yetiştirici olabilmesi için taşıdığı sorumluluğun, toplumsal beklentilerin ve bilimsel anlamda kazanılması gereken özelliklerin farkında olması gerekiyor. Eğitim sisteminde anahtar role sahip olan öğretmenler, toplumun eğitimsel değişimini gerçekleştirmede en önemli kaynak. Öğrencilere sayısal dersleri sevdirmenin esas yolu, bu derslerin, hayatın içindeki diğer disiplinleri anlamaları için yardımcı olacağını öğrencilere fark ettirmekten geçiyor.
OYNADIĞINIZ OYUNDA BİLE MATEMATİK VAR
Öğretmen çoklu zekâ testlerini uygulayarak bunların çeşidine uygun öğrencileri tespit ederek, örneklerini ve problemlerini buna göre zenginleştirebilir. Öğrencilerin matematiksel düşünme kabiliyetini geliştirmek için hayatın içindeki matematiği onlara tanıtabilir. Yaşamımızdaki pek çok şeyin, oynadıkları oyunların bile bir matematiğinin olduğunu onlara kavratmakla işe başlanabilir. Gelecekte karşılaşabileceği problemlerin üstesinden gelebilecek bireylerin yetiştirilmesi, eğitimin öncelikli hedeflerinden biri. Bu hedef doğrultusunda artık matematik eğitimi, yalnızca matematik bilen değil, sahip olduğu bilgiyi uygulayan, matematik yapan, problem çözen insanlar yetiştirmeyi hedefliyor. 21’inci yüzyıl bilgi toplumları, bireylerin temel becerilerin ötesine geçerek, ‘yeni yeterlilikler’ kazanmalarına ihtiyaç duyuyor. Matematik eğitiminde öğrencilerin edineceği kazanımlarla ilgili olarak incelenmesi ve tartışılması gereken önemli sorunlardan biri de, yalnızca verilen problemleri çözmek yerine yeni problemler kurma ve çözmeyi denemedir. Öğrencilerin bir konuyla ilgili problem kurabilmeleri için konunun temelini iyi yapılandırmış olmaları gerekiyor. Bu da matematikte kavram öğretimini önemli kılıyor.
GÜNLÜK YAŞAMLA İLİŞKİLENDİRİLMELİ
Ders anlatımında problemlerin çözümüne yer verildiği gibi problem kurma çalışmalarına da yer verilmeli. Çünkü problem kurma, öğrencilerin matematiksel durumları anlamalarını, problemlerde verilen kavramları yorumlamalarını ve sembolleri sözel ifadelerle söyleyebilmelerini sağlıyor. Sayısal dersler doğası gereği birçok soyut kavramı içerisinde barındırıyor. Bu kavramları mümkün olduğunca somutlaştırmak öğrenmenin başlangıç aşamalarında etkili oluyor. Bunun en önemli yollarından biri de günlük yaşamla ilgili verilecek örneklerle anlatılacak konuların ilişkilendirilmesi. Bu sayede çevremizde olup bitenler, anlatmak istediğimiz kavramların geliştirilmesine aracılık edebilir, öğrencilerin derse karşı motivasyonunu artırabilir. Öğretmenin öğretim şekli de öğrencilerin tutumlarını ve matematik alışkanlıklarını değiştirmede önemli bir rol oynuyor. Öğretmenler, öğrencilerin problem çözme başarısını artırmak için onlara rahat problem çözeceği ortamlar hazırlamalı. Öğrencisi problemi çözemediği zaman onda oluşabilecek hayal kırıklığını yok ederek ona tekrar denemesi, başka çözüm yolları düşünmesi için fırsat vermeli, rehberlik etmeli. Sınıf içinde bazı öğrenciler, diğerlerine göre daha hızlı bir şekilde problemi çözdüğünde, öğretmenin aceleci davranıp geribildirim yapmayarak problemle uğraşan diğerlerinin de çözümlerini tamamlaması için zaman vermeli. Öğretmen tarafından bir öğrenci için yapılacak iyi ya da kötü, hızlı ya da yavaş problem çözücü nitelendirilmeleri onun sınıf ortamındaki statüsünü belirlemede önemli bir etkiye sahip. Eğer öğrencinin sınıf içinde kabul edilen statüsü iyi değilse, bu onun etkili bir şekilde problem çözmesini engeller.
MATEMATİT KAYGISI OLAN BAŞARISIZ OLUYOR
Motivasyon, ilgi, kendine güven, kaygı, sabretme problem çözmeyi etkileyen faktörler arasında. Matematiği öğrenme isteği, matematik becerilerine güvenmesi, matematiğe yönelik duyguları, becerisi ve bilgisi öğrenci için anahtar bir role sahip. Ayrıca bu duyuşsal faktörler kişinin okul, eğitim ve iş hayatındaki kariyerini de etkiliyor. Genelde matematik kaygısı yüksek olan öğrenciler daha düşük, matematik güveni yüksek olanlar ise daha yüksek başarı gösteriyor. Matematiğin faydalı olduğuna inanma, ilgi ve hoşlanma düzeyiyle belirlenen matematiği öğrenme motivasyonu da başarıyla pozitif yönde ilişkili. ‘Yüksek motivasyon, güven ve uygun düzeyde kaygı, matematik başarısının bir ürünü mü yoksa sonucu mu?’ sorusuna cevap vermek zor ancak şu bir gerçek ki; öğrenci başarırsa, başarılı olabileceğine daha çok inanınır, başarılı olacağına daha çok inanırsa da matematikle daha çok ilgilenir. Modellerin, materyallerin, laboratuvarların, ilerleyen yıllarda eğitsel teknolojilerin (bilgisayar cebir sistemleri, dinamik yazılımlar, eğitsel videolar, dinamik web siteleri vs.) kullanımı öğrencilerin derse ilgisini, motivasyonunu ve uzun süreçte de yaklaşımını değiştirebiliyor. Öte yandan, öğretmenlerin problem çözme sürecinin oldukça karmaşık bir süreç olduğunun farkında olması ve bu nedenle öğrencinin problem çözme performansının çok zor geliştirileceğini bilmesi gerekiyor. Öğrencilerin problem çözmeyle ilgili doğru inançlara ve olumlu tutumlara sahip olmasını sağlayacak dolayısıyla onların problem çözme performansını artırmaya katkı sağlayacak öğretimsel uygulama ve yaklaşımlar şöyle sıralanabilir:
PROBLEM ÇÖZMEYE KATKI SAĞLAYACAK 10 YAKLAŞIM
1- Hedefler, açık bir şekilde ortaya konulmalı.
2- Matematik öğrenmenin her aşamasında öğrencinin kendine güveni geliştirilmeli.
3- Öğrenciler, aktif olmaları için cesaretlendirilmeli.
4- Gayretin önemli olduğundan bahsedilmeli.
5- Kendini geliştirmenin diğer öğrencilerden daha iyi olmaktan önemli olduğunu anlatılmalı.
6- Öğrenciye başarılı olduğu hissettirilmeli.
7- Hata yapmanın öğrenme sürecinin bir parçası olduğu belirtilmeli.
8- Alışılagelmiş okul kitabı ve birkaç dakikalık çözümü olan problemler yerine uzun süre alan açık-uçlu problemlerin sorulmalı.
9- Öğrenci, denklem ve kurala bağlı kalmadan mantık ve akıl yürütmeyle çözeceği problemlerle tanıştırılmalı.
10- Problem çözmede sabırlı olmanın önemi ve bir matematik probleminin birkaç dakika içinde çözülemeyebileceği gerçeği vurgulanmalı.
ÇÖZÜM YOLLARINI TARTIŞIN
Öğretmenler örencilerin bilinçlerini artırmak ve geliştirmek için şunları yapmalı:
1- Problem çözme ve düşünme becerilerini geliştirecek stratejileri kullanmalı ve öğrencisinin kullanmasını sağlamalı.
2- Öğrencisini, çözüm yöntem ve stratejilerini sesli düşünmesi noktasında cesaretlendirmeli.
3- Planlama ve değerlendirme gerektiren problemler seçmeli.
4- Öğrencisini, alternatif çözüm yollarını bulmaya teşvik etmeli.
5- Problemin sonucunun akla uygun olup olmadığını inceletmeli.
6- Öğrenciler için problemi nasıl çözdüklerini, buldukları farklı çözüm yollarını tartışabilecekleri bir iletişim ortamı hazırlamalı.
PROF. DR. AHMET ŞÜKRÜ ÖZDEMİR KİMDİR?
Prof. Dr. Ahmet Şükrü Özdemir 1982’de İstanbul Üniversitesi Fen Fakültesi Matematik Bölümü’nden mezun oldu. Yüksek lisansını 1987’de, doktorasını ise 1993’te ‘Sayılar Teorisi’ konusunda İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü’nde tamamladı. Akademik çalışma hayatına 1984-1988 yılları arasında Uludağ Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü’nde başlayan Prof. Dr. Özdemir, farklı yükseköğretim kurumlarında çeşitli görevlerde bulundu. Marmara Üniversitesi Atatürk Eğitim Fakültesi Matematik Eğitimi Ana Bilim Dalı Başkanlığı’nı 16 yıl sürdüren Prof. Özdemir, iki yıldır Matematik ve Fen Alanları Bölümü Başkanlığı yanında Matematik Eğitimi Ana Bilim Dalı Başkanlığı görevini de yürütüyor. Yönetimi tamamlanmış 14 doktora ve 37 yüksek lisans tezi bulunan Prof. Dr. Özdemir, halen dört doktora ve yedi yüksek lisans tezinin de yöneticiliğini yapıyor. Profesörün uluslararası ve ulusal dergilerde basılmış, 50’ye yakın makalesi bulunuyor. Basılmış iki, basılmak üzere olan iki kitabı mevcut. 26 Aralık 2015 tarihinden itibaren Marmara Üniversitesi Atatürk Eğitim Fakültesi Dekanı olan Prof. Özdemir, iyi derecede İngilizce ve orta derecede Arapça biliyor.