Güncelleme Tarihi:
Matematik dersinde toplam formülleri arasında tek ve çift sayıların kısa yoldan toplanması için toplam formülleri verilmesi durumu söz konusudur. Bu formüllerin uygulanmasıyla birlikte ardışık tek ve çift sayıların toplamı zorluk çekilmeden bulunabilir.
Ardışık Sayıların Toplamı Nasıl Bulunur?
Matematiğin en temel konuları arasında yer almakta olan sayıların ifade edilmesinde bazı değişik terimler in kullanım durumu söz konusudur. Bunlar: Pozitif sayılar, negatif sayılar, üslü sayılar, asal sayılar, tek sayılar ve çift sayılar gibi sayıların kümeler halinde anlatımlarının yapılması durumu söz konusu haldedir. Bu anlatımlar arasında bulunmakta olan tek ve çift sayıların hesaplamaları ile alakalı çeşitli bilgilerin verilmesi durumu da söz konusudur.
Ardışık sayılar tek ve çift olarak belirtilmektedir. Durum böyle olunca da sayının niteliğine göre ardışık sayıların toplama formülü kullanılarak toplamını bulma işlemi gerçekleştirilmektedir. Bu işlemin gerçekleştirilmesi noktasında formüllerin önemli katkısının varlığı söz konusudur. Çünkü bu formüller sayesinde ardışık sayıların toplamı kolaylıkla bulunabilmektedir.
Bu doğrultuda ardışık sayıların toplamı nasıl bulunur sorusunun yanıtı, formüllerle bulunur olmaktadır. Çünkü formüller sayesinde ardışık sayıların tek ve ya çift olması durumunda uygun formül kullanılarak kolaylıkla sonuca ulaşma durumu söz konusu hale gelebilmektedir.
Ardışık Sayılar Toplamı Formülü ve Örnekleri İle Konu Anlatımı
Konu ardışık sayılar olduğunda sayının sahip olduğu özelliğe göre formüllerden yararlanılarak toplama işlemi yapılmaktadır. Bu noktada konun anlaşılabilir olması önemlidir. Bunun sağlanabilmesi için ise ardışık sayıya göre formüllerden bahsedilmesi ve örneklerin verilmesi son derece büyük bir yarar sağlayacaktır. Bu doğrultuda ardışık çift sayıların toplamı formülü hakkında bilgi verilmesi gerekliliği söz konusudur.
Buna göre ardışık çift sayıların toplam formülü hesaplamak için toplamı verilmiş durumda olan sayıların en küçük doğal sayı olan 2 sayısından başlamak suretiyle 2, 4, 6, 8 şeklinde devam ederek ilerlemesi gerekliliği söz konusudur. Buna göre ardışık çift sayılar:
2+4+6+8+......+2n = n.(n+1) formülünden yararlanılarak hesaplanmaktadır.
Konu ardışık sayılar olduğunda tek ardışık sayıların da varlığı söz konusudur. Bu noktada ardışık sayıların toplamı formülünden bahsedilmesi gerektiğinde ardışık tek sayı formülü kullanımının gerekliliği söz konusu olmaktadır. Bu durum neticesinde ardışık tek sayıların toplam formülü için çift sayılarda olduğu gibi en küçük doğal tek sayı olma özelliğine sahip durumdaki 1 sayısından başlanması suretiyle 1, 3, 5, 7, 9 şeklinde devam edilerek sonrasında gelmesi gerekliliği söz konusudur. Buna göre ardışık tek sayılar toplamı formülü şu şekildedir:
1+3+5+7+.....+(2n-1) =n.n= n kare bu formülden yararlanılarak ardışık tek sayıların toplamı kolaylıkla bulunabilir bir hal almaktadır. Bu noktada yapılacak olan işleme göre uygun olan formülün iyi bilinmesi ve bu doğrultuda istenilen işlemin yapılabilir olması mümkün hale gelmektedir. Bu noktada formüllerin önemi son derece büyük olmaktadır. Bu bakımdan ardışık sayılarla alakalı olarak öncelikli olan konu formüllerin öğrenilmesi olmaktadır.
Ardışık sayılar toplamı uygulanan formüller kullanılarak yapılabilir hale gelmektedir. Bu bakımdan sizde verilen formülleri kullanarak ardışık sayılar toplamı işlemlerini yaparak kendinizi önemli ölçüde geliştirebilir ve konu ile ilgili olarak karşınıza çıkabilecek soruları kolaylıkla yanıtlayabilirsiniz. Çünkü ardışık sayıları toplamı konusunun temelini formüller oluşturmaktadır.